1.0 promotions with comprehensive customer shopping and desire

1.0 Introduction


Modern technologies have severely advanced the retail environment.
 At the beginning retailers were suffered
with the intimidating remarks of online opponents without any cost of retail
shops. And also they were in a position to make better powerful target
promotions with    more effectively target
promotions with comprehensive customer shopping and desire information. Thereafter
retailers try to develop their own online features, characteristics etc. Now, after
developing those features, retailers want to learn new channel marketing
systems to adjust an online, analytical and much focused procedure with an
award of hands-in experience environment.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
Writers Experience
Recommended Service
From $13.90 per page
4,6 / 5
Writers Experience
From $20.00 per page
4,5 / 5
Writers Experience
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team


Retailers mainly focused on intimidating comments from
online contestants, in addition to being more effectively targeted for
promotions, at retail stores that are in a position to buy detailed consumer
shopping and desires information. At the present time, the retailers raise
their online presence, retailers want complete channel marketing that brings
online systematics, hugely selected approaches in-store intimacy and
experience.  A number of few new
technologies such as video analytics, Wi-Fi analytics, beacons, smart glasses, micro
electro mechanical systems (MEMS) chips, LED Lighting, Bluetooth 4.0 and Loyalty
Programs have come out to assist retailers optimize their store experience and


1.1   Problem Background

Make use of mobile
applications, Wi-Fi, Bluetooth and Beacon technology, now retailers can track
the customer’s movements, customer’s location within the store. As an example


For example, it holds a track
of customer movements and sends relevant information in each time a customer
installing a store application and gets into the store and connects to the
Internet. Now retailers use beacons to track customer location and send
notifications via Bluetooth for customers without applications. Some retailers
offer free Wi-Fi to customers and track their locations.


Video tracking and face
recognition technology also uses to learn about customer behavior in spite of privacy
related to in-store. As a better approach, no retailers collect Wi-Fi or GSM
signals from customers’ mobile phones and track customers since this technology
perform with a high accuracy and coverage.


Through this study I wish to
propose a system that that leverage analytics to refine store layouts without
doing any customer disturbance.


1.2   Research Question


How can we develop a system that leverage analytics to refine store
layouts without doing any customer disturbance.


1.3   Research Objectives

Exploring the customer
location tracking technologies, pros and cons of each technology.

Optimize store layouts applying
a mining approach.


2.0   Literature Review

2.1 Existing Systems

work of applicability to this study crosses a wide range: localization, vision-based
sensing, human activity sensing, and physical analytics in retail



Localization and Sensing: Using the foundation and environment, you can sense
both the environment and the user. Despite the many work related to Wi-Fi
localization, existing work can achieve high accuracy only at the high
deployment cost of Wi-Fi ingress points and at the price of additional
information and adjustments. CrowdInside introduced a way to build an indoor
floorplan using a customer’s location on a smartphone.


approaches are usually costly. Especially when 3D model construction is
possible, it is applied to popular landmarks. The interior of the store is
generally lacking in such a typical landmark, often gathers with people and

of human activity: delicate work


of human activity using apparel device such as pedometer,

rate monitor, microphone etc.


of retailing startup: In modern systems, it is necessary to utilize the basis
of specific Wi – Fi localization to examine consumer in – store at a retail
store. Euclid Analytics purchases an existing in-store Wi-Fi substructure and
provides the same analysis to retailers. In this approach, refined item level
information has not yet been provided. Apple iBeacon communicates
location-specific messages in the store to nearby smartphones via Bluetooth Low
Energy (BLE). Mondelez needs a retail store that puts the camera on a shelf
that uses face recognition to aware the demographics of grazing certain


2.2  Drawbacks of existing systems


these methods used smartphones eg: Wi-Fi, Bluetooth etc. I wish to proposed a
new store layout optimizer without doing any customer disturbances.


3.0 Methodology

3.1 Introduction

          *Understanding customer flow is essential for enhancing
your store layout.

*By analyzing customer location data (camera data), inventory data, try
to find the most effective arrangement of products, shelves and departments.